
Symboleo: Towards a Specification Language for
Legal Contracts

Sepehr Sharifi, Alireza Parvizimosaed, Daniel Amyot, Luigi Logrippo, John Mylopoulos
School of EECS, University of Ottawa, Ottawa, Canada

{sshar190, aparv007, damyot, logrippo, jmylopou}@uottawa.ca

Abstract—Legal contracts specify the terms and conditions (in
essence, requirements) that apply to business transactions. Smart
contracts are software systems that monitor and control the
execution of contracts to ensure compliance. This paper proposes
a formal specification language for contracts, called Symboleo,
where contracts consist of collections of obligations and powers
that define the legal contract’s compliant executions. The formal
semantics of Symboleo is based on an extension of an ontology
for Law and is described in terms of logical axioms on statecharts
that describe the lifetimes of contracts, obligations and powers.
Our proposal includes a preliminary evaluation through the
specification of a real life-inspired Sale-of-Goods contract, with a
prototype execution engine. We envision this language to enable
formally verifying contracts to detect requirements-level issues
and to generate executable smart contracts (e.g., on blockchain
technology).

Index Terms—Legal contracts, smart contracts, software re-
quirements specifications, formal specification languages

I. INTRODUCTION

Legal contracts specify the terms and conditions that ap-
ply to business transactions. Legal contracts are commonly
expressed in natural language and contain many legal require-
ments that are often ambiguous, incomplete, and possibly in-
consistent. Smart contracts are programs intended to partially
automate the execution of legal contracts and also monitor
them for compliance with relevant terms and conditions. We
are interested in formal specifications of such contracts that
can enable automated analysis as well as the generation of
smart contract programs.

For example, a smart contract may monitor the execution
of a Sale-of-Goods contract between an Argentinian meat
producer, call it A, and a Canadian supermarket chain, call
it C, by receiving and recording events on a blockchain ledger
capturing the execution flow of the contract. Events monitored
may be pickup of the meat from A, delivery to Buenos Aires
port, loading on a cargo vessel, delivery to the Vancouver
port, pickup and delivery to C. The smart contract may also
carry out some of the actions called for in the contract,
such as payment for the transaction by transferring funds
held in an escrow account. There is tremendous interest in
the food supply chain industry for such systems, but also
in other sectors, including energy, insurance, and government
affairs [1].

The research reported herein is partially funded by an NSERC Strategic
Partnership Grant titled “Middleware Framework and Programming Infras-
tructure for IoT Services” and by SSHRC’s Partnership Grant “Autonomy
through Cyberjustice Technologies (ACT)”

The idea of smart contracts has been around for more than
20 years [2], going back to seminal work by Nick Szabo. How-
ever, interest in them has surged in the last ten years, thanks
to increased availability and reduced cost for IoT technologies
(sensors, actuators, robotic devices, etc.1), as well as the rise
of distributed ledger or blockchain technologies. Blockchain
provides only one of several possible monitoring methods for
smart contracts, but it can be essential when integrity and
security warranties for execution logs are required. It should
be noted that in this work, we subscribe to Szabo’s original
definition of smart contracts, from which more recent views
have deviated by referring to any application software running
on a blockchain platform, although there are common elements
in the two definitions [2].

In this paper we propose a formal specification language for
smart contracts called Symboleo2 that is sufficiently expressive
to represent many types of real-life contracts, while still
capable of supporting their analysis, as we plan to demonstrate
in future work.

A contract can be viewed as an outcomes-oriented process
that specifies its compliant executions. However, contracts
specify legal processes (as compared to business processes)
where there are provisions for penalties and compensations
whenever any party violates its obligations. Looking at them
from this perspective, contracts are very interesting processes
because they provide alternative compliant executions if terms
and conditions are violated, including the imposition of new
obligations on non-compliant parties through powers (special
kinds of rights). They can also specify the possibility of
subcontracting, as well as the delegation of obligations to third
parties at execution time.

Our research methodology is based on Design Science. The
main artefacts are a language (with preliminary results re-
ported here) with tools for verification and code generation (fu-
ture work). The problem relevance was assessed by interacting
with engineering and lawyers from industry and government
in a large, six-year long international project (anonymized for
this submission), by exploring the literature and by analyzing
dozens of contracts on supply chains, construction, and energy.
The contributions of this paper include:

• A formal specification language (Symboleo) for smart
contracts that accounts for obligations and powers, using

1Statista 2016, see http://bit.ly/2M3QT0U
2From the Greek word Συµβoλαιo, which means contract.

http://bit.ly/2M3QT0U


Fig. 1. Proposed Contract Ontology

domain concepts and axioms. Symboleo specifications
provide requirements for smart contract executions that
can be monitored at runtime.

• A formal semantics based on statecharts that define the
lifecycle of contracts, obligation and power instances,
following earlier work on process monitoring [3].

• An illustrative example (international meat sales contract)
inspired from real-life contracts is used to demonstrate the
language, and offer a preliminary evaluation.

The rest of this paper is structured as follows. Section II
presents our research baseline, including the nature of legal
contracts and the ontology we adopted for specifying them.
Section III presents our specification language through an
example, while Section IV presents the syntax and semantics
for Symboleo. Section V discusses related work, whereas
Section VI concludes and highlights future work.

II. RESEARCH BASELINE

A contract is a collection of obligations and powers between
participating parties. As a legal artifact, a contract has its
own lifecycle that begins with proposals and negotiations,
during which three necessary conditions apply: offer, ac-
ceptance and consideration. The execution (performance) of
a contract is initiated after signing (formation). Execution
may be suspended, successfully or unsuccessfully terminated,
renegotiated or renewed.

Contracts can be understood as prescriptions of allowable
execution processes [4], [5]. Relative to business processes,
contracts are outcome-oriented processes focusing on ‘what’
the obligations of different parties are, and leaving the ‘how’
to the parties responsible. In addition, contracts fundamentally
differ from business processes in that they can change during
their execution through the exertion of powers. For the meat
sales example, the contract specifies that the seller needs to
deliver the meat to a freight company, who delivers it to a
shipping company; however this obligation can be violated,
which may give the buyer the power to terminate the contract.

Ontologies capture the primitive concepts of domains at
various levels of abstractions [6]. We propose a contract do-
main ontology, depicted in Fig. 1, which refines a Core Legal

Ontology, namely UFO-L, which in turn is an extension of the
Unified Foundational Ontology (UFO) [6]. Shaded concepts
in the figure are adopted from UFO, while the remaining
concepts are either new or specializations of UFO concepts
with new association links. It is worth noting that UFO-L is
based on Alexy’s Theory of Constitutional Rights [7], which is
based on Hohfeld’s theory of legal positions [8] but without
some of its shortcomings [6]. The concepts of our contract
ontology are as follows:
Contract: a collection of obligations and powers between two
or more roles, which are assigned to parties during execution,
and are concerned with two or more assets (since at least one
asset should be associated with each role.
Asset: an owned (tangible or intangible) item of value [9].
Assets include contractual considerations [10] that a contract
is concerned with. Other kinds of assets can also be used to
ensure proper execution of a contract, e.g., a bill of lading
for freight contracts or invoices. Asset quantity and quality
constraints are typically specified in contracts.
Legal Position: legal positions are the legal relationships
between roles. For our purposes, there are just two such
relationships: obligations and powers [8].
Obligation: the legal duty of a debtor towards a creditor to
bring about a certain legal situation (consequent) when another
legal situation (antecedent) holds. Surviving obligations remain
in effect after the termination of the contract. A 6-month non-
disclosure obligation after the end of the contract is an example
of a surviving obligation. Obligations usually concern assets
and are instantiated by conditions (trigger)3.
Legal situation: a type of situation associated with a contract,
obligation or power instance. Situations are states of affairs and
are comprised of possibly many endurants (including other
situations and relata) [12]. A situation occurs within a time
interval T, but not in any of its proper subintervals [13].
Event: a happening that occurs at a time instance, and that
cannot change. Events also have pre-state and post-state situ-
ations [12], [13]. For example, delivered for a product is an
event whose pre-state is ‘being in transit’ and post-state is
‘being in the point of destination’.
Power: the right of a party to create, change, suspend or
extinguish legal positions. A power is instantiated by a trigger
and has an antecedent (legal situation) that must be met for it
to become in effect.
Role: contractual roles are characterized by collections of
obligations and powers they participate in [6].
Party: a legal agent (person or institution) who owns assets
and who is assigned roles in contracts.

III. SYMBOLEO: A CONTRACT SPECIFICATION LANGUAGE

This section introduces Symboleo with a meat sales exam-
ple expressed as parameterized natural language in Table I.
Producing a formal specification from natural language text
involves several key decisions. These decisions can be taken

3A trigger is true for most obligations. However, suspensive obligations
need to be triggered explicitly before they are instantiated [11].



TABLE I
SAMPLE CLAUSES OF A MEAT PURCHASE AND SALE CONTRACT

This agreement is entered into as of the date <effDate>, between
<party1> as Seller with the address <retAdd>, and <party2> as Buyer
with the address <delAdd>.

1) Payment & Delivery
1.1 Seller shall sell an amount of <qnt> meat with <qlt> quality

(“goods”) to the Buyer.
1.2 Title in the Goods shall not pass on to the Buyer until payment

of the amount owed has been made in full.
1.3 The Seller shall deliver the Order in one delivery within

<delDueDateDays> days to the Buyer at its warehouse.
1.4 The Buyer shall pay <amt> (“amount”) in <curr> (“currency”)

to the Seller before <payDueDate>.
1.5 In the event of late payment of the amount owed due, the Buyer

shall pay interests equal to <intRate>% of the amount owed, and
the Seller may suspend performance of all of its obligations under
the agreement until payment of amounts due has been received
in full.

2) Assignment
2.1 The rights and obligations are not assignable by Buyer.

3) Termination
3.1 Any delay in delivery of the goods will not entitle the Buyer to

terminate the Contract unless such delay exceeds 10 Days.
4) Confidentiality

4.1 Both Seller and Buyer must keep the contents of this contract
confidential during the execution of the contract and six months
after the termination of the contract.

in consultation with all parties involved and contribute to make
formally specified contracts more precise and consistent than
it is normally the case for conventional contracts. Firstly, we
need to decide how generic/specific we want the specification
to be. In the example, the contract could apply to a single sale
of meat with two specific parties serving as seller and buyer,
or to multiple sales of various food assets involving different
parties. This decision determines the parameters of the contract
specification. Secondly, the specifier needs to consider whether
the informal specification is missing important implicit con-
straints and, if so, include them in the formal specification. For
example, does every execution of the contract terminate in a
finite amount of time (say, 21 days after the start date), or can
it run for an indefinite period because of a missing temporal
constraint? Are there sub-contracting constraints? Answers
to such questions concern liveness and safety properties for
contracts, in a way similar to those defined for distributed
systems [14]. To address the above concerns, we propose the
structure illustrated in Table II, with an example corresponding
to the natural language contract in Table I.

Contract Specification. Consists of two sections: (a) the
domain section, defining domain-dependent concepts as spe-
cializations of Symboleo’s concepts, and corresponding to the
definitions stated in the contract; (b) the contract body, cor-
responding to the terms and conditions stated in the contract.
The body essentially contains deontic requirements.
Domain. Domain-related concepts are defined as special-
izations (isA) of contract ontology concepts. For instance,
Buyer and Seller are specializations of Role with additional
attributes; Meat is a specialization of PerishableGood, which

TABLE II
MEAT SALES CONTRACT PROTOCOL

Domain meatSaleD
Seller isA Role with returnAddress: String;
Buyer isA Role with warehouse: String;
Currency isA Enumeration(‘CAD’, ‘USD’, ‘EUR’);
MeatQuality isA Enumeration(‘PRIME’, ‘AAA’, ‘AA’, ‘A’);
PerishableGood isA Asset with quantity: Number, quality: MeatQuality;
Meat isA PerishableGood;
Delivered isA Event with item: Meat, deliveryAddress: String, delDueD:

Date;
Paid isA Event with amount: Number, currency: Currency, from: Role,

to: Role, payDueD: Date;
PaidLate isA Event with amount: Number, currency: Currency, from:

Role, to: Role;
Disclosed isA Event with contractID : String;

endDomain

Contract meatSaleC
(
buyer: Buyer, seller: Seller, qnt: Number, qlt:

MeatQuality, amt: Number, curr: Currency, payDueDate: Date, delAdd:
String, effDate: Date, delDueDateDays: Number, intRate: Number

)
Declarations

goods : Meat with quantity := qnt, quality := qlt;
delivered : Delivered with item := goods, deliveryAddress := delAdd,

delDueD := effDate + delDueDatedays;
paid : Paid with amount := amt, currency := curr, from := buyer, to

:= seller, payDueD := payDueDate;
paidLate : PaidLate with amount := (1 + intRate/100)×amt, currency

:= curr, from := buyer, to := seller;
disclosed : Disclosed with contract := self;

Preconditions
isOwner(goods, seller);

Postconditions
isOwner(goods, buyer) AND NOT(isOwner(goods, seller));

Obligations
O1 : O(seller, buyer, true, happensBefore(delivered,

delivered.delDueD));
O2 : O(buyer, seller, true, happensBefore(paid, paid.payDueD));
O3 : violates(O2.instance) → O(buyer, seller, true,

happens(paidLate, ));
SurvivingObls

SO1: O(seller, buyer, true, not happens(disclosed(self), t)
AND (t within activates(self) + 6 months));

SO2: O(buyer, seller, true, not happens(disclosed(self), t)
AND (t within activates(self) + 6 months));

Powers
P1: violates(O2.instance) → P(seller, buyer, true,

suspends(O1.instance));
P2: happensWithin(paidLate, suspension(O1.instance)) → P(buyer,

seller, true, resumes(O1.instance));
P3: not(happensBefore(delivered, delivered.delDueDate +

10 days)) → P(buyer, seller, true, terminates(self));
Constraints

NOT(isEqual(buyer, seller));
forAll o | self.obligation.instance (CannotBeAssigned(o));
forAll p | self.power.instance (CannotBeAssigned(p));

endContract

is a specialization of Asset; and Paid specializes Event with
attributes amount and currency.
Contract Signature. The second part of a contract specifica-
tion begins with its name and typed parameters. Parameters
consist of at least two roles with optional variables that
determine properties of contractual elements. During contract
formation, roles are assigned to parties. For instance, Meat-



Sale (shown in Table II) is a contract between roles buyer
and seller, where seller promises to deliver qnt quantity of
meat with qlt quality to buyer; and buyer promises to pay
the amount owed amt with currency curr before due date
payDueDate. The buyer and seller are assigned (e.g., EatMart
and Great Argentinian Meat Company) upon instantiation.
Contract Body. Contracts also contain local variable dec-
larations; preconditions and postconditions; obligations and
powers; as well as contract constraints that define liveness and
safety properties.
Obligations. The main part of a contract consists of obli-
gations. An obligation is specified as Oid:O(debtor, creditor,
antecedent, consequent). Debtor and creditor are roles, and
antecedent and consequent are legal situations (specified by
propositions). Antecedent and consequent propositions de-
scribe situations that need to hold for obligations to be
fulfilled. Obligations become InEffect when their antecedents
becomes true. Suspensive Obligations require a trigger to be
created. Triggers are situations that are stated in terms of
propositions and are located on the left side of the ‘→’ symbol.
If there are no triggers mentioned in the specification, an
obligation will be instantiated but will take effect only when
its antecedent becomes true. In Table II, three obligations are
specified for the example contract:
– O1 obliges the seller towards the buyer to bring about the
meat delivery by due date; it should be noted that, since
quantity and quality are attributes of the meat, delivery has
not occurred if these attributes are not complied with.
– O2 obliges the buyer towards the seller to bring about
payment by its due date.
– O3 obliges the buyer towards the seller to bring about late
payment. O3 is triggered by the violation of O2. The amount
of late payment is specified in the Declarations section.
Surviving Obligations. They are obligations that survive after
the Termination of a contract. Surviving obligations are usually
prohibitions such as non-disclosure clauses (e.g., SO1 and SO2
in Table II). They too can have triggers.
Powers. A power is specified as Pid:P(creditor, debtor, an-
tecedent, consequent), where the creditor and debtor are roles,
the antecedent is a legal situation described as a proposition,
and consequent is a proposition describing a legal situation that
can be brought about by the creditor. In Table II, three powers
are specified:
– P1 allows the seller to suspend delivery (i.e., O1.instance) if
obligation O2 has been violated.
– P2 allows the buyer to resume O1 with a late payment
(including interests).
– P3 allows the buyer to terminate the contract, if meat delivery
does not occur within ten days after the delivery due date.

A power entitles the creditor to bring about the consequent.
For example, P1 entitles the seller to perform the suspending
action and bring about a suspends (O1.instance) situation. A
power is activated whenever its antecedent is true. If a party
obtains a power, it can change the states of obligations, powers
and contracts as stated in its consequent. For example, P3
can bring about unsuccessful termination of the contract if its

Fig. 2. SDs of the contract, obligation and power concepts

antecedent becomes true (which is always true in this case).
Just as obligations, powers can be instantiated by triggers.
Constraints. Liveness constraints ensure that every contract
execution terminates in a bounded amount of time, while
safety constraints ensure that bad things do not happen during
any execution. The following are safety constraints: Cannot-
BeAssigned(o) disallows assignment of obligation instance o
during the execution of a contract, whereas not(isEqual(seller,
buyer)) prohibits any party from being assigned to both roles
at the same time.

IV. SYNTAX AND SEMANTICS

Syntax. The syntax of Symboleo is defined in terms of
an Extended BNF grammar, for which we have an editor
prototype (based on Xtext) [15].

Semantics. The most important aspect of the semantics of
Symboleo concerns instances of contracts, obligations and
powers that have a lifecycle that can be described in terms
of statecharts (Fig. 2). A change of state for any contract,
obligation or power instance is marked by an event. By
recording events, for example in a blockchain ledger, smart
contracts can monitor contract execution, ensure compliance
to the contract, and determine violations and violators.

An obligation (instance) comes into existence as soon as
the contract forms, but a suspended obligation depends on a
trigger to resume. In addition, the proposed statecharts capture
dependencies among the lifecycles of obligations, powers and
contract. For example, when an active contract terminates
unsuccessfully, e.g., because one of the parties exerts its power
to terminate (cancel) it, all active obligations and powers
transition to their unsuccessful termination state.

After contract formation, parties are bound to the contract



but the contract only becomes active on its effective date.
During assignment of a contract [10], a contract may enter
the Unassign state when the assigner withdraws, and then
will remain in that state until an assignee is assigned. A
contract may also be suspended if one of the parties exerts
its suspension powers, or if a force majeure occurs, e.g., a
natural catastrophe. Upon suspension, all obligation and power
instances associated with the suspended contract are suspended
as well. The suspended contract waits for an event that resumes
it, such as a suspension deadline or an action performed
by some party. After resumption, all instances of suspended
obligations and powers return to the InEffect state. A contract
successfully terminates (SuccessfulTermination) if all of its
active obligations, except surviving ones, are fulfilled. In other
cases, namely termination due to the exertion of a power or
contract expiration while in the Active superstate, the contract
and its active obligations and powers terminate unsuccessfully
(UnsuccessfulTermination). If a material obligation is violated
(material breach of the contract), Contract Law usually allows
the damaged party to terminate the contract even if such power
is not explicitly specified in the contract. Renegotiation and
renewal are expressed in terms of implicit powers for every
contract specification that can be activated upon all contractual
parties’ agreement and will be further explored in future work.

Conditional obligations are created (instantiated) when their
triggers become true4. However, a trigger transitions an un-
conditional obligation (whose antecedent is always true) to
the InEffect state directly. A conditional obligation is not
activated until its antecedent becomes true. In the case of
antecedent expiration, the obligation is discharged, since there
is no possibility for it to become true after it has expired.
Discharged obligations are cancelled obligations rather than
unsuccessfully terminated ones. When an obligation instance
becomes InEffect, its debtor can fulfill it by bringing about its
consequent. The breach (transitioning to the violation state)
of an obligation instance, e.g., because a deadline has passed,
may trigger a power that entitles its creditor to suspend, ter-
minate or discharge one or more InEffect obligation instances,
or may trigger another obligation5. In the case of suspension,
the debtor is not responsible against the creditor to bring about
the obligation until an event, e.g., the fulfillment of another
obligation, resumes it.

Powers are instantiated and activated in the same way as
obligations. In many cases, events such as violations of obli-
gations trigger them to become InEffect. A power might have
a deadline for exertion, i.e., a deadline in its antecedent. After
the deadline, the power expires thus entering the Unsuccessful
Termination state.

The formal semantics of contract, obligation and power
instance lifecycles is specified through 27 axioms. Due to
space constraints, we present here three of these axioms in
eqs. 1-3, while the rest are available in [17]. The axioms’ five
primitive predicates are listed in Table III. Since Symboleo

4In some cases, triggers can always be true, e.g. O1 in Table II.
5This is also known as a Contrary to Duty (CTD) Obligation [16].

supports both temporal interval and point expressions, some
predicates are adopted from Allen [13], namely occurs(s,T),
while initiates(e,s), terminates(e,s), happens(e,s) and hold-
sAt(s,t) are adopted from the event calculus [18]. Moreover, as
a shorthand, we allow events to be used in place of points in
time expressions, and situations in place of intervals, as in ‘e
within s’, where event e represents a time point and situation
s represents a time interval.

TABLE III
PRIMITIVE PREDICATES OF SYMBOLEO

e within s situation s holds when event e happens.
occurs(s, T) situation s holds during the whole interval T,

not just in any of its subintervals.
initiates(e, s) event e brings about situation s.
terminates(e, s) event e terminates situation s.
happens(e, t) event e happens at time instance t.

Axiom 1 (Create a conditional obligation): for all condi-
tional triggered obligations o of contract c, if o is triggered
while c is in effect, then o is created. Assumption: o.ant
denotes the antecedent of obligation o.

happens(triggered(o), ) ∧
(triggered(o) within InEffect(c)) ∧ ¬(o.ant = true)

→ initiates(triggered(o), create(o))

(1)

Axiom 2 (Terminate an obligation by a power): for any
obligation o and power p of contract c, if the consequent of
p implies that o is terminated and p is exerted while p is in
effect, then o is terminated unsuccessfully.

(e = terminated(o)) ∧ (e within active(o))∧
(e within InEffect(p)) ∧ (e within InEffect(c)) ∧
(p.cons → happens(terminated(o), ))

→ initiates(e, unsuccessfulTermination(o)) ∧
terminates(e, active(o)) ∧ happens(terminated(o), )

(2)

Axiom 3 (Suspend an obligation by contract suspension):
for any obligation o of contract c, if c is suspended while o
is in effect; then o is suspended.

(e = suspended(c)) ∧ happens(e, ) ∧
(e within InEffect(o)) ∧ (e within InEffect(c)) →
initiates(e, suspension(o)) ∧ terminates(e, InEffect(o))

(3)

We have tested these axioms through a Prolog-based prototype
reasoning tool by checking the sample Sales-of-goods contract.
The tool and the test cases (with successful results) are also
available [17].

V. RELATED WORK

There has been much work on the formalization of legal
concepts. Logicians model legal concepts with variants of
Deontic Logic, such as Standard Deontic Logic [19] and De-
feasible Logic [20]. Event Calculus [21] and Linear Temporal
Logic [22] have been used to formalize obligations, permis-
sions and powers [23]. Such approaches have not addressed
many aspects of contracts, focusing instead on modelling legal
relations (legal positions). A process view of contracts was
proposed in [4], [5] where contracts are modelled as finite
state machines (FSMs). This enables normative monitoring of



contracts [5]. Our approach considerably extends theirs, by
using a FSM model that has separate machines for the contract
as a whole, obligations, and powers. Likewise, Chesani et
al. [3] propose an event calculus-based axiomatization that
formally specifies FSM of time-aware commitments in order
to monitor business processes, but do not address powers and
surviving obligations. These axioms have been extended by
Günay et al. [24] to include conditional commitments where
there are antecedents with consequents.

Our view of contracts-as-processes is in line with that of
Azzura [25]. However, these processes should be defined
declaratively in terms of outcomes, rather than operationally
in terms of activities. We have mentioned here and will show
in future work that outcomes are events that are the result of
obligations and powers being acted upon and can be recorded
in logs or in the blockchain. Ladleif and Weske [26] recently
proposed a unifying model of legal smart contracts based
on UFO-L, where legal relations enable actions when their
conditions occur and are updated by actions. This is similar to
our notion of power. However, their model only has primitive
time and does not support several elements of legal contracts.

Various smart contract languages have been introduced for
distributed ledger systems. Many of them are implementation
dependent and do not completely capture the concepts in-
volved in legal contracts. The languages that have come closest
to addressing both these issues are the Accord Project (https:
//www.accordproject.org), DAML (https://daml.com) and CSL
(https://www.deondigital.com). Although these are not as
widely used as Solidity (https://solidity.readthedocs.io), they
abstract out the storage layer from the language, making it
implementation agnostic. Still, these languages only capture
basic legal notions (obligations but not power) and their
development is in early stages. These languages are really
programming languages, rather than analyzable specification
languages such as Symboleo.

VI. CONCLUSIONS AND FUTURE WORK

We have sketched the fundamental elements of Symboleo,
a formal specification language for contracts and their re-
quirements. In the spirit of disciplined Software Engineering
principles, such specifications are intended to serve as starting
point towards smart contract implementations on platforms
offering adequate distributed and secure ledger functionalities,
such as blockchain platforms. Our language is based on
concepts that considerably extend the state of the art, including
an extensible ontology, an extensible state machine model,
logic specification by axioms, and Prolog prototyping.

For future work, we plan to (a) develop a tool-supported
process for transforming contract specifications into smart
contract code, e.g., in DAML; (b) develop formal analysis
methods for contract specifications, likely with SMT solvers;
(c) improve the usability of the syntax; (d) develop tools
for the semi-automatic transformation of legal contract texts
into formal specifications (e.g., to analyze existing contracts);
(e) extend Symboleo to support advanced subcontracting fea-
tures, and (f) perform case studies. An Xtext-based editor

for (a) and a Prolog-based tool for (b) are currently under
development [15], [17]. We have also identified case studies
in the energy and service sectors, with industrial partners.

REFERENCES

[1] H. Shahid, “How smart contracts are transforming the landscape of
insurance industry,” 2019, accessed 2019-02-05. [Online]. Available:
http://bit.ly/32MWZJc

[2] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[3] F. Chesani, P. Mello, M. Montali, and P. Torroni, “Representing and
monitoring social commitments using the event calculus,” Autonomous
Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 85–130, 2013.

[4] A. Daskalopulu, “Modelling legal contracts as processes,” in Database
and Expert Systems Applications, 2000. 11th Int. Workshop. IEEE,
2000, pp. 1074–1079.

[5] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, “On legal contracts, imperative and declarative smart contracts,
and blockchain systems,” Artificial Intelligence and Law, vol. 26, no. 4,
pp. 377–409, 2018.

[6] C. Griffo, J. P. A. Almeida, and G. Guizzardi, “Towards a legal core
ontology based on Alexy’s theory of fundamental rights,” in Multilingual
Workshop on Artificial Intelligence and Law (ICAIL), 2015.

[7] R. Alexy, A theory of constitutional rights. Oxford University Press,
USA, 2010.

[8] W. N. Hohfeld, “Some fundamental legal conceptions as applied in
judicial reasoning,” Yale Lj, vol. 23, p. 16, 1913.

[9] Wikipedia contributors, “Asset — Wikipedia, the free encyclopedia,”
https://bit.ly/35TjZrn, 2019, [Online; accessed 21-October-2019].

[10] B. H. Bix, Contract law: rules, theory, and context. Cambridge
University Press, 2012.

[11] M.-P. Allard, “The retroactive effect of conditional obligations in tax
law,” Canadian Tax Journal, vol. 49, no. 6, pp. 1726–1839, 2001.

[12] G. Guizzardi, G. Wagner, J. P. A. Almeida, and R. S. Guizzardi,
“Towards ontological foundations for conceptual modeling: the unified
foundational ontology (UFO) story,” Applied ontology, vol. 10, no. 3-4,
pp. 259–271, 2015.

[13] J. F. Allen, “Towards a general theory of action and time,” Artificial
intelligence, vol. 23, no. 2, pp. 123–154, 1984.

[14] E. Kindler, “Safety and liveness properties: A survey,” Bulletin of the
European Association for Theoretical Computer Science, vol. 53, no.
268-272, p. 30, 1994.

[15] S. Sharifi, T. Paul, and A. Parvizimosaed, “Symboleo-IDE,” Jun. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3903951

[16] H. Prakken and M. Sergot, “Contrary-to-duty obligations,” Studia Log-
ica, vol. 57, no. 1, pp. 91–115, 1996.

[17] A. Parvizimosaed and S. Sharifi, “Symboleo Compliance Checker,”
Jun. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3903954

[18] M. Shanahan, “The event calculus explained,” in Artificial intelligence
today. Springer, 1999, pp. 409–430.

[19] W. M. Farmer and Q. Hu, “FCL: A formal language for writing con-
tracts,” in Quality Software Through Reuse and Integration. Springer,
2016, pp. 190–208.

[20] I. A. Letia and A. Groza, “Running contracts with defeasible commit-
ment,” in IEA/AIE 2006, ser. LNAI, vol. 4031. Springer, 2006, pp.
91–100.

[21] A. D. Farrell et al., “Performance monitoring of service-level agreements
for utility computing using the event calculus,” in First IEEE Int.
Workshop on Electronic Contracting. IEEE, 2004, pp. 17–24.

[22] H. L. Cardoso and E. Oliveira, “Directed deadline obligations in agent-
based business contracts,” in Coordination, Organizations, Institutions
and Norms in Agent Systems V. Springer, 2010, pp. 225–240.

[23] A. J. Jones and M. Sergot, “A formal characterisation of institutionalised
power,” Logic Journal of the IGPL, vol. 4, no. 3, pp. 427–443, 1996.

[24] A. Günay and P. Yolum, “Detecting conflicts in commitments,” in Inter-
national Workshop on Declarative Agent Languages and Technologies.
Springer, 2011, pp. 51–66.

[25] F. Dalpiaz, E. Cardoso, G. Canobbio, P. Giorgini, and J. Mylopoulos,
“Social specifications of business processes with azzurra,” in 9th In-
ternational Conference on Research Challenges in Information Science
(RCIS). IEEE CS, 2015, pp. 7–18.

[26] J. Ladleif and M. Weske, “A unifying model of legal smart contracts,”
in Conceptual Modeling. Cham: Springer, 2019, pp. 323–337.

https://www.accordproject.org
https://www.accordproject.org
https://daml.com
https://www.deondigital.com
https://solidity.readthedocs.io
http://bit.ly/32MWZJc
https://bit.ly/35TjZrn
https://doi.org/10.5281/zenodo.3903951
https://doi.org/10.5281/zenodo.3903954

	Introduction
	Research Baseline
	Symboleo: A Contract Specification Language
	Syntax and Semantics
	Related Work
	Conclusions and Future Work
	References

